Soft Computing A Framework for Comparing Heterogeneous Objects: on the Similarity Measurements for Fuzzy, Numerical and Categorical Attributes
نویسندگان
چکیده
Real-world data collections are often heterogeneous (represented by a set of mixed attributes data types: numerical, categorical and fuzzy); since most available similarity measures can only be applied to one type of data, it becomes essential to construct an appropriate similarity measure for comparing such complex. In this paper, a framework of new and unified similarity measures is proposed for comparing heterogeneous objects described by numerical, categorical and fuzzy attributes. Examples are used to illustrate, compare and discuss the applications and efficiency of the proposed approach to heterogeneous data comparison and clustering.
منابع مشابه
A framework for comparing heterogeneous objects: on the similarity measurements for fuzzy, numerical and categorical attributes
Real-world data collections are often heterogeneous (represented by a set of mixed attributes data types: numerical, categorical and fuzzy); since most available similarity measures can only be applied to one type of data, it becomes essential to construct an appropriate similarity measure for comparing such complex data. In this paper, a framework of new and unified similarity measures is prop...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملAn Approach to Flexible Information Access Systems using Soft Computing
We present a scheme for modeling expert like flexibility in query-answering through extending information bases with a knowledge-based soft computing layer for query processing. The knowledge extends the each attribute with a similarity measure on its domain. The measures are applied in a soft query interpretation into a fuzzy set expression of the information need to be satisfied. The softenin...
متن کاملNumerical and Categorical Attributes Data Clustering Using K- Modes and Fuzzy K-Modes
Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of numerical and categorical attributes because there exists an awkward gap between the similarity metrics for categorical and numerical data. This paper therefore presents a general clustering ...
متن کاملVacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery
Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012